Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
PLoS Pathog ; 20(2): e1011954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300891

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus that is causally associated with several malignancies. In addition to latent factors, lytic replication contributes to cancer development. In this study, we examined whether the lytic gene BNRF1, which is conserved among gamma-herpesviruses, has an important role in lymphomagenesis. We found that lymphoblastoid cell lines (LCLs) established by BNRF1-knockout EBV exhibited remarkably lower pathogenicity in a mice xenograft model than LCLs produced by wild-type EBV (LCLs-WT). RNA-seq analyses revealed that BNRF1 elicited the expression of interferon-inducible protein 27 (IFI27), which promotes cell proliferation. IFI27 knockdown in LCLs-WT resulted in excessive production of reactive oxygen species, leading to cell death and significantly decreased their pathogenicity in vivo. We also confirmed that IFI27 was upregulated during primary infection in B-cells. Our findings revealed that BNRF1 promoted robust proliferation of the B-cells that were transformed by EBV latent infection via IFI27 upregulation both in vitro and in vivo.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesviridae , Humanos , Animais , Camundongos , Herpesvirus Humano 4 , Interferons/metabolismo , Regulação para Cima , Herpesviridae/metabolismo , Latência Viral , Proteínas de Membrana/metabolismo
2.
Infect Genet Evol ; 115: 105507, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37757900

RESUMO

Human rotavirus strains having the unconventional G3P[6] genotype have been sporadically detected in diarrheic patients in different parts of the world. However, the full genomes of only three human G3P[6] strains from Asian countries (China, Indonesia, and Vietnam) have been sequenced and characterized, and thus the exact origin and evolution of G3P[6] strains in Asia remain to be elucidated. Here, we sequenced and characterized the full genome of a G3P[6] strain (RVA/Human-wt/JPN/SO1199/2020/G3P[6]) found in a stool sample from a 3-month-old infant admitted with acute gastroenteritis in Japan. On full genomic analysis, strain SO1199 was revealed to have a unique Wa-like genogroup configuration: G3-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1. VP6 genotype I5 and NSP1 genotype A8 are commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis demonstrated that all 11 genes of strain SO1199 were closely related to those of porcine and/or porcine-like human rotaviruses and thus appeared to be of porcine origin. Thus, strain SO1199 was shown to possess a porcine-like genomic backbone and thus is likely to be the result of interspecies transmission of a porcine rotavirus strain. Of note is that all 11 genes of strain SO1199 were phylogenetically located in clusters, distinct from those of the previously identified porcine-like human G3P[6] strains from around the world including Asia, suggesting the occurrence of independent porcine-to-human zoonotic transmission events. To our knowledge, this is the first report on full genome-based characterization of a human G3P[6] strain that has emerged in Japan. Our findings revealed the diversity of unconventional human G3P[6] strains in Asia, and provide important insights into the origin and evolution of G3P[6] strains.


Assuntos
Infecções por Rotavirus , Rotavirus , Lactente , Humanos , Animais , Criança , Suínos , Rotavirus/genética , Japão , Filogenia , Genoma Viral , Genótipo
3.
Microbiol Spectr ; 11(4): e0044023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409959

RESUMO

The in vitro growth transformation of primary B cells by Epstein-Barr virus (EBV) is the initial step in the development of posttransplant lymphoproliferative disorder (PTLD). We performed electron microscopic analysis and immunostaining of primary B cells infected with wild-type EBV. Interestingly, the nucleolar size was increased by two days after infection. A recent study found that nucleolar hypertrophy, which is caused by the induction of the IMPDH2 gene, is required for the efficient promotion of growth in cancers. In the present study, RNA-seq revealed that the IMPDH2 gene was significantly induced by EBV and that its level peaked at day 2. Even without EBV infection, the activation of primary B cells by the CD40 ligand and interleukin-4 increased IMPDH2 expression and nucleolar hypertrophy. Using EBNA2 or LMP1 knockout viruses, we found that EBNA2 and MYC, but not LMP1, induced the IMPDH2 gene during primary infections. IMPDH2 inhibition by mycophenolic acid (MPA) blocked the growth transformation of primary B cells by EBV, leading to smaller nucleoli, nuclei, and cells. Mycophenolate mofetil (MMF), which is a prodrug of MPA that is approved for use as an immunosuppressant, was tested in a mouse xenograft model. Oral MMF significantly improved the survival of mice and reduced splenomegaly. Taken together, these results indicate that EBV induces IMPDH2 expression through EBNA2-dependent and MYC-dependent mechanisms, leading to the hypertrophy of the nucleoli, nuclei, and cells as well as efficient cell proliferation. Our results provide basic evidence that IMPDH2 induction and nucleolar enlargement are crucial for B cell transformation by EBV. In addition, the use of MMF suppresses PTLD. IMPORTANCE EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).


Assuntos
Infecções por Vírus Epstein-Barr , Transtornos Linfoproliferativos , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/genética , Hipertrofia , IMP Desidrogenase
4.
Tumour Virus Res ; 15: 200260, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169175

RESUMO

The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesviridae , Humanos , Herpesvirus Humano 4 , Montagem de Vírus , Carcinogênese , Transformação Celular Neoplásica
5.
J Virol ; 97(6): e0043723, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37195206

RESUMO

Enveloped viruses undergo a complex multistep process of assembly, maturation, and release into the extracellular space utilizing host secretory machinery. Several studies of the herpesvirus subfamily have shown that secretory vesicles derived from the trans-Golgi network (TGN) or endosomes transport virions into the extracellular space. However, the regulatory mechanism underlying the release of Epstein-Barr virus, a human oncovirus, remains unclear. We demonstrate that disruption of BBLF1, a tegument component, suppressed viral release and resulted in the accumulation of viral particles on the inner side of the vesicular membrane. Organelle separation revealed the accumulation of infectious viruses in fractions containing vesicles derived from the TGN and late endosomes. Deficiency of an acidic amino acid cluster in BBLF1 reduced viral secretion. Moreover, truncational deletion of the C-terminal region of BBLF1 increased infectious virus production. These findings suggest that BBLF1 regulates the viral release pathway and reveal a new aspect of tegument protein function. IMPORTANCE Several viruses have been linked to the development of cancer in humans. Epstein-Barr virus (EBV), the first identified human oncovirus, causes a wide range of cancers. Accumulating literature has demonstrated the role of viral reactivation in tumorigenesis. Elucidating the functions of viral lytic genes induced by reactivation, and the mechanisms of lytic infection, is essential to understanding pathogenesis. Progeny viral particles synthesized during lytic infection are released outside the cell after the assembly, maturation, and release steps, leading to further infection. Through functional analysis using BBLF1-knockout viruses, we demonstrated that BBLF1 promotes viral release. The acidic amino acid cluster in BBLF1 was also important for viral release. Conversely, mutants lacking the C terminus exhibited more efficient virus production, suggesting that BBLF1 is involved in the fine-tuning of progeny release during the EBV life cycle.


Assuntos
Herpesvirus Humano 4 , Vesículas Secretórias , Proteínas Virais , Liberação de Vírus , Replicação Viral , Humanos , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Vesículas Secretórias/metabolismo , Vesículas Secretórias/virologia , Vírion/fisiologia , Replicação Viral/fisiologia , Células HEK293 , Proteínas Virais/metabolismo , Liberação de Vírus/genética
6.
Fujita Med J ; 9(2): 65-72, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234394

RESUMO

Ever since its discovery as the first human oncogenic virus, Epstein-Barr virus (EBV) has been the focus of many researchers and is one of the best-studied pathogens. EBV is a major causative agent of Burkitt lymphoma, Hodgkin lymphoma, post-transplantation lymphoproliferative disorder, NK/T cell lymphoma, chronic active EBV disease, nasopharyngeal carcinoma, gastric carcinoma, and infectious mononucleosis. Although a truly comprehensive understanding of the virus and the associated disorders remains elusive, major breakthroughs in molecular cloning and omics analyses are shedding new light on this important virus. For example, EBV is now implicated in autoimmune diseases and neurodegenerative disorders. This review provides an overview of the molecular biology of EBV, the research history, the associated disorders, and the epidemiology.

7.
PLoS Pathog ; 19(5): e1011383, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37252940

RESUMO

Aichi virus (AiV), a small non-enveloped RNA virus, hijacks the endoplasmic reticulum (ER)-Golgi cholesterol transport machinery to form cholesterol-rich replication sites originating from Golgi membranes. Interferon-induced transmembrane proteins (IFITMs) are antiviral restriction factors, whose involvement in intracellular cholesterol transport is suggested. Here, we describe the roles of IFITM1 in cholesterol transport that affect AiV RNA replication. IFITM1 stimulated AiV RNA replication and its knockdown significantly reduced the replication. In replicon RNA-transfected or infected cells, endogenous IFITM1 localized to the viral RNA replication sites. Further, IFITM1 interacted with viral proteins and host Golgi proteins, ACBD3, PI4KB, OSBP, which constitute the replication sites. When overexpressed, IFITM1 localized to the Golgi as well as endosomes, and this phenotype was also observed for endogenous IFITM1 early in AiV RNA replication, leading to the distribution of cholesterol at the Golgi-derived replication sites. The pharmacological inhibition of ER-Golgi cholesterol transport or endosomal cholesterol export impaired AiV RNA replication and cholesterol accumulation at the replication sites. Such defects were corrected by expression of IFITM1. Overexpressed IFITM1 facilitated late endosome-Golgi cholesterol transport without any viral proteins. In summary, we propose a model in which IFITM1 enhances cholesterol transport to the Golgi to accumulate cholesterol at Golgi-derived replication sites, providing a novel mechanism by which IFITM1 enables efficient genome replication of non-enveloped RNA virus.


Assuntos
Replicação do RNA , RNA Viral , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/fisiologia , Proteínas Virais/metabolismo , Colesterol/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768585

RESUMO

N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Transativadores/genética , Transativadores/metabolismo , Replicação Viral/genética , RNA Viral/genética , RNA Viral/metabolismo
9.
J Biol Chem ; 298(11): 102513, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150501

RESUMO

The human cytomegalovirus (HCMV) UL97 protein is a conserved herpesvirus protein kinase (CHPK) and a viral cyclin-dependent kinase (v-CDK). However, mechanisms regulating its activity in the context of infection are unknown. Here, we identified several cellular regulatory 14-3-3 proteins as UL97-interacting partners that promote UL97 stability. Humans are known to encode seven isoforms of 14-3-3 proteins (ß, ε, η, γ, σ, θ, and ζ) that bind phosphoserines or phosphothreonines to impact protein structure, stability, activity, and localization. Our proteomic analysis of UL97 identified 49 interacting partners, including 14-3-3 isoforms ß, η, and γ. Furthermore, coimmunoprecipitation with Western blotting assays demonstrated that UL97 interaction with 14-3-3 isoforms ß, ε, η, γ, and θ occurs in a kinase activity-dependent manner. Using mutational analysis, we determined the serine residue at amino acid 13 of UL97 is crucial for 14-3-3 interaction. We demonstrate UL97 S13A (serine to alanine substitution at residue 13) retains kinase activity but the mutant protein accumulated at lower levels than WT UL97. Finally, we show both laboratory (AD169) and clinical (TB40/E) strains of HCMV encoding UL97 S13A replicated with WT kinetics in fibroblasts but showed decreased UL97 accumulation. Taken together, we conclude that 14-3-3 proteins interact with and stabilize UL97 during HCMV infection.


Assuntos
Proteínas 14-3-3 , Citomegalovirus , Humanos , Citomegalovirus/fisiologia , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Serina/metabolismo , Proteômica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
10.
Commun Biol ; 5(1): 694, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854076

RESUMO

Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that causes various diseases in humans, ranging from common mucocutaneous lesions to severe life-threatening encephalitis. However, our understanding of the interaction between HSV-1 and human host factors remains incomplete. Here, to identify the host factors for HSV-1 infection, we performed a human genome-wide CRISPR screen using near-haploid HAP1 cells, in which gene knockout (KO) could be efficiently achieved. Along with several already known host factors, we identified 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) as a host factor for HSV-1 infection. The KO of PAPSS1 in HAP1 cells reduced heparan sulfate (HepS) expression, consequently diminishing the binding of HSV-1 and several other HepS-dependent viruses (such as HSV-2, hepatitis B virus, and a human seasonal coronavirus). Hence, our findings provide further insights into the host factor requirements for HSV-1 infection and HepS biosynthesis.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Inativação de Genes , Heparitina Sulfato/metabolismo , Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos
11.
J Virol ; 96(14): e0051822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862711

RESUMO

Protein-protein interactions (PPIs) are crucial for various biological processes. Epstein-Barr virus (EBV) proteins typically form complexes, regulating the replication and persistence of the viral genome in human cells. However, the role of EBV protein complexes under physiological conditions remains unclear. In this study, we performed comprehensive analyses of EBV PPIs in living cells using the NanoBiT system. We identified 195 PPIs, many of which have not previously been reported. Computational analyses of these PPIs revealed that BLRF2, which is only found in gammaherpesviruses, is a central protein in the structural network of EBV tegument proteins. To characterize the role of BLRF2, we generated two BLRF2 knockout EBV clones using CRISPR/Cas9. BLRF2 knockout significantly decreased the production of infectious virus particles, which was partially restored by exogenous BLRF2 expression. In addition, self-association of BLRF2 protein was found, and mutation of the residues crucial for the self-association affected stability of the protein. Our data imply that BLRF2 is a tegument network hub that plays important roles in progeny virion maturation. IMPORTANCE EBV remains a significant public health challenge, causing infectious mononucleosis and several cancer types. Therefore, the better understanding of the molecular mechanisms underlying EBV replication is of high clinical importance. As protein-protein interactions (PPIs) are major regulators of virus-associated pathogenesis, comprehensive analyses of PPIs are essential. Previous studies on PPIs in EBV or other herpesviruses have predominantly employed the yeast two-hybrid (Y2H) system, immunoprecipitation, and pulldown assays. Herein, using a novel luminescence-based method, we identified 195 PPIs, most of which have not previously been reported. Computational and functional analyses using knockout viruses revealed that BLRF2 plays a central role in the EBV life cycle, which makes it a valuable target for drug development.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Mapas de Interação de Proteínas , Proteínas Virais , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiologia , Humanos , Proteínas Virais/genética , Replicação Viral
12.
mBio ; 13(4): e0097122, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35856559

RESUMO

Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor ß-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.


Assuntos
COVID-19 , NF-kappa B , Citocinas/metabolismo , Humanos , NF-kappa B/metabolismo , Fases de Leitura Aberta , SARS-CoV-2/genética , Ubiquitinação
13.
Front Microbiol ; 13: 870816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783391

RESUMO

N6-methyladenosine (m6A) mediates various biological processes by affecting RNA stability, splicing, and translational efficiency. The roles of m6A modification in Epstein-Barr virus (EBV) infection in the lytic phase are unclear. Here, knockout of the m6A methyltransferase, N6-methyladenosine methyltransferase-like 3 (METTL3), or inhibition of methylation by DAA or UZH1a decreased the expression of viral lytic proteins and reduced progeny virion production. Interestingly, cell growth and viability were decreased by induction of the lytic cycle in METTL3-knockout or inhibitor-treated cells. Apoptosis was induced in those conditions possibly because of a decreased level of the anti-apoptotic viral protein, BHRF1. Therefore, m6A shows potential as a target of lytic induction therapy for EBV-associated cancers, including Burkitt lymphoma.

14.
Cell Commun Signal ; 20(1): 95, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729616

RESUMO

BACKGROUND: Viruses must adapt to the environment of their host cells to establish infection and persist. Diverse mammalian cells, including virus-infected cells, release extracellular vesicles such as exosomes containing proteins and miRNAs, and use these vesicles to mediate intercellular communication. However, the roles of exosomes in viral infection remain unclear. RESULTS: We screened viral proteins to identify those responsible for the exosome-mediated enhancement of Epstein-Barr virus (EBV) infection. We identified BGLF2 protein encapsulated in exosomes, which were released by EBV-infected cells. BGLF2 protein is a tegument protein that exists in the space between the envelope and nucleocapsid, and it is released into the cytoplasm shortly after infection. BGLF2 protein-containing exosomes enhanced viral gene expression and repressed innate immunity, thereby supporting the EBV infection. CONCLUSIONS: The EBV tegument protein BGLF2 is encapsulated in exosomes and released by infected cells to facilitate the establishment of EBV infection. These findings suggest that tegument proteins support viral infection not only between the envelope and nucleocapsid, as well as in extraviral particles such as exosomes. Video abstract.


Assuntos
Infecções por Vírus Epstein-Barr , Exossomos , Animais , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Exossomos/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Mamíferos/metabolismo , Proteínas Virais de Fusão , Proteínas Virais
15.
Jpn J Infect Dis ; 75(5): 466-475, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35491229

RESUMO

The emergence of unusual G9P[8]-E2 human rotaviruses in the Tokyo metropolitan area, Japan, in 2018 has been reported. During rotavirus strain surveillance in different regions of Japan (Mie, Okayama, and Chiba prefectures), G9P[8]-E2 strains were detected in children with diarrhea from all three prefectures. Here, we characterized the whole genome of seven representative G9P[8]-E2 strains. In the full-genome-based analysis, the seven study strains exhibited a unique genotype configuration with the NSP4 gene of genogroup 2 in a genogroup 1 genomic backbone: G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1. This genotype constellation was shared by the Tokyo G9P[8]-E2 strains. Phylogenetic analysis showed that all 11 genes, except NSP4, of the seven study strains appeared to have originated from co-circulating Wa-like G9P[8]-E1 strains. In contrast, NSP4 appeared to have originated from the co-circulating DS-1-like G2P[4]-E2 strains. Thus, G9P[8]-E2 strains appear to be derived through reassortment between G9P[8]-E1 and G2P[4]-E2 strains in Japan. Notably, the seven study G9P[8]-E2 strains and Tokyo G9P[8]-E2 strains were revealed to have 11-segment genomes almost indistinguishable from one another in their sequences (99.3-100%), indicating all these G9P[8]-E2 strains had a common origin. To our knowledge, this is the first description of the rapid spread of G9P[8]-E2 strains across a country.


Assuntos
Infecções por Rotavirus , Rotavirus , Criança , Genoma Viral , Genótipo , Humanos , Japão/epidemiologia , Filogenia , Rotavirus/genética , Infecções por Rotavirus/epidemiologia
16.
Cancer Sci ; 113(8): 2862-2877, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35633182

RESUMO

Several epidemiological studies have suggested that Epstein-Barr virus (EBV) lytic infection is essential for the development of nasopharyngeal carcinoma (NPC), as the elevation of antibody titers against EBV lytic proteins is a common feature of NPC. Although ZEBRA protein is a key trigger for the initiation of lytic infection, whether its expression affects the prognosis and pathogenesis of NPC remains unclear. In this study, 64 NPC biopsy specimens were analyzed using immunohistochemistry. We found that ZEBRA was significantly associated with a worsening of progression-free survival in NPC (adjusted hazard ratio, 3.58; 95% confidence interval, 1.08-11.87; p = 0.037). Moreover, ZEBRA expression positively correlated with key endocrinological proteins, estrogen receptor α, and aromatase. The transcriptional level of ZEBRA is activated by estrogen in an estrogen receptor α-dependent manner, resulting in an increase in structural gene expression levels and extracellular virus DNA copy number in NPC cell lines, reminiscent of lytic infection. Interestingly, it did not suppress cellular proliferation or increase apoptosis, in contrast with cells treated with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate, indicating that viral production induced by estrogen is not a cell lytic phenomenon. Our results suggest that intratumoral estrogen overproduced by aromatase could induce ZEBRA expression and EBV reactivation, contributing to the progression of NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Transativadores , Aromatase , Receptor alfa de Estrogênio , Estrogênios , Herpesvirus Humano 4/patogenicidade , Humanos , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Transativadores/genética
17.
J Gen Virol ; 103(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639587

RESUMO

The group A rotavirus (RVA) genome comprising 11 double-stranded RNAs encodes six structural proteins (VP1-VP4, VP6, and VP7) and six non-structural proteins (NSP1-NSP6). Among these 12 rotaviral proteins, NSP6 has been less studied as to its function. We previously prepared a recombinant NSP6-deficient RVA derived from simian strain SA11-L2 by reverse genetics, and found that the NSP6-deficient virus grew well in cell culture, although its growth was less abundant than that of the parental SA11-L2 strain. In this study, we examined the potency of a recombinant RVA incapable of NSP6 expression to cause diarrhoea in suckling mice. The suckling mice infected with the NSP6-deficient virus apparently experienced diarrhoea, although the symptom was milder and the duration of diarrhoea was shorter than in the mice infected with the authentic SA11-L2 strain. Thus, together with the results obtained for cultured cells in the previous study, it can be concluded that NSP6 is not necessarily required for replication and pathogenicity in vitro and in vivo.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Linhagem Celular , Células Cultivadas , Diarreia , Camundongos , Rotavirus/genética
18.
Cancer Sci ; 113(7): 2446-2456, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485636

RESUMO

Nasopharyngeal carcinoma (NPC) is caused by infection with Epstein-Barr virus (EBV) and endemic in certain geographic regions. EBV lytic gene, BALF2, closely associates with viral reactivation and BALF2 gene variation, the H-H-H strain, causes NPC in endemic region, southern China. Here, we investigate whether such EBV variations also affect NPC in a non-endemic region, Japan. Viral genome sequencing with 47 EBV isolates of Japanese NPC were performed and compared with those of other EBV-associated diseases from Japan or NPC in Southern China. EBV genomes of Japanese NPC are different from those of other diseases in Japan or endemic NPC; Japanese NPC was not affected by the endemic strain (the BALF2 H-H-H) but frequently carried the type 2 EBV or the strain with intermediate risk of endemic NPC (the BALF2 H-H-L). Seven single nucleotide variations were specifically associated with Japanese NPC, of which six were present in both type 1 and 2 EBV genomes, suggesting the contribution of the type 2 EBV-derived haplotype. This observation was supported by a higher viral titer and stronger viral reactivation in NPC with either type 2 or H-H-L strains. Our results highlight the importance of viral strains and viral reactivation in the pathogenesis of non-endemic NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , China/epidemiologia , Infecções por Vírus Epstein-Barr/complicações , Genoma Viral , Herpesvirus Humano 4/genética , Humanos , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia
19.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215982

RESUMO

Inhibition of transmembrane serine protease 2 (TMPRSS2) is expected to block the spike protein-mediated fusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nafamostat, a potent TMPRSS2 inhibitor as well as a candidate for anti-SARS-CoV-2 drug, possesses the same acyl substructure as camostat, but is known to have a greater antiviral effect. A unique aspect of the molecular binding of nafamostat has been recently reported to be the formation of a covalent bond between its acyl substructure and Ser441 in TMPRSS2. In this study, we investigated crucial elements that cause the difference in anti-SARS-CoV-2 activity of nafamostat and camostat. In silico analysis showed that Asp435 significantly contributes to the binding of nafamostat and camostat to TMPRSS2, while Glu299 interacts strongly only with nafamostat. The estimated binding affinity for each compound with TMPRSS2 was actually consistent with the higher activity of nafamostat; however, the evaluation of the newly synthesized nafamostat derivatives revealed that the predicted binding affinity did not correlate with their anti-SARS-CoV-2 activity measured by the cytopathic effect (CPE) inhibition assay. It was further shown that the substitution of the ester bond with amide bond in nafamostat resulted in significantly weakened anti-SARS-CoV-2 activity. These results strongly indicate that the ease of covalent bond formation with Ser441 in TMPRSS2 possibly plays a major role in the anti-SARS-CoV-2 effect of nafamostat and its derivatives.


Assuntos
Antivirais/farmacologia , Benzamidinas/farmacologia , Simulação por Computador , Guanidinas/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Benzamidinas/química , Linhagem Celular , Guanidinas/química , Humanos , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Serina Endopeptidases/metabolismo , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
20.
Virology ; 568: 31-40, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093708

RESUMO

Epstein-Barr virus (EBV) is an etiologic agent of infectious mononucleosis and several malignancies. Here, we found that reactivation of EBV resulted in increased programmed cell death-ligand 1 (PD-L1) expression in a cell type-dependent manner. Lytic induction in EBV-positive Akata, AGS, MutuI, and Jijoye cell lines increased PD-L1 levels, but cells such as EBV-negative Akata, MutuIII, and P3HR1 did not have increased PD-L1. EBV in the P3HR1 cell line has a deletion in the EBNA2 gene, while EBV in its parental cell line, Jijoye, has the complete EBNA2 gene. PD-L1 expression by lytic induction was reduced when EBNA2 was knocked down. In addition, pharmacological inhibition indicated involvement of nuclear factor kappa B, mitogen-activated protein kinase, and AKT signaling. These results suggest that EBV likely evades immunity by inducing PD-L1 upon reactivation, through the increased expression of EBNA2 and activation of signaling pathways.


Assuntos
Antígeno B7-H1/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Regulação da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Antígeno B7-H1/metabolismo , Linhagem Celular , Células Cultivadas , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...